Interval Posets of Permutations

نویسندگان

چکیده

The interval poset of a permutation catalogues the intervals that appear in its one-line notation, according to set inclusion. We study this poset, describing structural, characterizing, and enumerative properties.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plane posets, special posets, and permutations

We study the self-dual Hopf algebra HSP of special posets introduced by Malvenuto and Reutenauer and the Hopf algebra morphism from HSP to the Hopf algebra of free quasi-symmetric functions FQSym given by linear extensions. In particular, we construct two Hopf subalgebras both isomorphic to FQSym; the first one is based on plane posets, the second one on heap-ordered forests. An explicit isomor...

متن کامل

Partitions, permutations and posets

1. Partitions For the definition of (number) partition, Ferrers diagram and Young tableaux, conjugate partition see Chapter 6 of R. Stanley’s Algebraic Combinatorics book. This section is based (more or less) on the treatment of the book A Course in Combinatorics by Van Lint and Wilson (Chapter 15). Proposition 1.1. Let pk(n) be the number of partitions of n into at most k parts. Let p(n) be th...

متن کامل

Interval number of special posets and random posets

The interval number i(P) of a poset P is the smallest t such that P is a containment of sets that are unions of at most t real intervals. For the special poset Bn(k) consisting of the singletons and ksubsets of an n-element set, ordered by inclusion, i(Bn(k)) = min {k, n − k + 1} if |n/2 − k | ≥ n/2 − (n/2). For bipartite posets with n elements or n minimal elements, i(P) ≤  n lgn − lglgn  + ...

متن کامل

Permutations with interval cycles

We study permutations of the set [n] = {1, 2, . . . , n} written in cycle notation, for which each cycle forms an increasing or decreasing interval of positive integers. More generally, permutations whose cycle elements form arithmetic progressions are considered. We also investigate the class of generalised interval permutations, where each cycle can be rearranged in increasing order to form a...

متن کامل

Counting Stabilized-Interval-Free Permutations

A stabilized-interval-free (SIF) permutation on [n] = {1, 2, ..., n} is one that does not stabilize any proper subinterval of [n]. By presenting a decomposition of an arbitrary permutation into a list of SIF permutations, we show that the generating function A(x) for SIF permutations satisfies the defining property: [xn−1]A(x)n = n! . We also give an efficient recurrence for counting SIF permut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Order

سال: 2022

ISSN: ['1572-9273', '0167-8094']

DOI: https://doi.org/10.1007/s11083-021-09576-1